465

Energy transfer between external and internal
gravity waves

By F. K. BALL
C.S.I.R.O. Division of Meteorological Physics, Aspendale, Victoria

(Received 20 November 1963)

In a two-layer liquid system non-linear resdnant interactions between a pair of
external (surface) waves can result in transfer of energy to an internal wave
when appropriate resonance conditions are satisfied. This energy transfer is
likely to be more powerful than similar transfers between external waves. The
shallow water case is discussed in detail.

1. Introduction

In this paper we consider the transfer of energy between internal and external
gravity waves by ‘primary resonant interaction’ (a term to be explained
subsequently). It was shown by Phillips (1960) that simple surface gravity waves
cannot interact in this way and that it was necessary to consider secondary inter-
actions to understand the process of energy transfer. The secondary interactions
are apparently significant in the development of a random field of gravity waves
such as is generated by the wind blowing over the ocean. It is shown here that,
if the liquid is stratified, there is the possibility of primary interactions between
internal and external waves. Furthermore, as both ocean and atmosphere are
stratified, it is likely that primary interactions are of some importance in the
study of both. In particular the development of the ocean wave spectrum
(considered, for instance, by Benney 1962; Hasselmann 1962, 1963 a, b; Longuet-
Higgins 1962; Phillips 1960) may be partly controlled by energy exchanges with
internal motions; the internal motions so generated are also of considerable
interest in themselves.

The process of resonant interaction is not difficult to understand physically,
though the detailed analysis of a particular case generally involves a great deal
of algebra which effectively obscures the simple nature of the process. We
propose, therefore, before considering gravity-wave interactions, to give a simple
description of the process without reference to a specific physical system. For
simplicity we confine our attention to systems which, when the governing
equations are linearized by perturbation methods, give equations with constant
coefficients having solutions expressible as the sum of undamped waves of the
form sin (m.r —vt+¢). The vector wave-number m and the frequency v satisfy

a frequency equation F(m,) = 0, (1.1)

which is characteristic of the particular set of linear equations. These waves are
mutually independent and each conserves its own energy; the phase velocity,
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energy transmission (group velocity) and dispersion will all be described more
or less adequately by this linear theory. If the system is a very simple one, where
time is the only independent variable, then the frequency equation is in » only
and has discrete roots which give the frequencies of the normal modes.

We now investigate circumstances under which the non-linear terms can give
rise to significant energy transfer between the basic wave solutions. Suppose
there are two waves (which we will call primary waves) with vector wave-
numbers m, and m, and frequencies v, and v,; these waves are both solutions of
the linearized equations and each satifies the frequency equation (1.1). The
most important non-linear terms are usually the quadratic ones, though there
are systems where the quadratic terms vanish and the important terms are
cubic or higher powers; we will not be concerned with these. When two primary
waves are present the quadratic terms can be expressed as sum and difference
(combination) waves with wave-numbers mg; = m,+m, and frequencies
Vs = V) + V,; there may also be a “self-interaction’ of each wave, included in the
present remarks by putting m; = m, and v, = v,, though such an interaction is
not of interest here because it does not play a direct part in the energy transfer
between internal and external waves.

These combination waves can be considered as forcing waves acting on the
linearized system whose response can readily be determined by solving the
appropriate equations. It is perhaps preferable, in the first instance, to explain
what happens in physical terms without recourse to mathematical details. The
combination waves move with phase speeds v;/|m,| which are determined by
the primary waves. They generate secondary waves of wave-number m, that
move at phase speeds characteristic of the system, that is, at speeds v,/|m,| where
the v; are the roots of the frequency equation F(my,v) = 0. In general none of
the v; will equal v3 and the secondary waves will move at different phase speeds
from the combination waves. Whereas initially there will be a transfer of energy
to the secondary waves, none of these waves will remain in phase with either of
the combination waves so that continuous transfer of energy will not take place
and the amplitudes of the secondary waves will remain small. The maximum
amplitude attained will be greater the longer the wave remains in, or nearly in,
correct phase; that is the more nearly v, equals v;.

The phenomenon of primary resonant interaction occurs when one of the com-
bination waves moves at the same speed as one of the secondary waves (i.e.
vg = v;). This particular secondary wave does not now get out of phase with the
forcing wave and continuous transfer of energy is possible. This transfer will, of
course, be limited by the available energy in the primary waves.t The condition
for resonant interaction between the primary waves (m,, v;) and (m,, v,) is

F(m,,v)) = F(m,,v,) = F(my, v;) = 0, (1.2)
and this is also exactly the condition for resonant interaction between the
secondary wave and either of the primary waves. The secondary wave therefore

1 In reality the energy transfer will also be limited by the finite lengths of the wave
trains. Transfer can only take place while the wave trains overlap and the time of overlap
is dependent on the group velocities in contrast to the condition for resonant interaction
which is dependent on the phase velocities.
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interacts with either primary to transfer energy to the other and we have a
triplet of waves which exchange energy comparatively freely. If other energy
transfers are ignored we find in some systems that the rate of change of amplitude
of each wave is proportional to the product of the amplitudes of the other two
(as in the case considered in §3). The amplitudes of the waves can then be
expressed as elliptic functions of time whose period (which is much longer than
the periods of the individual waves) depends on the total energy of the three
waves.

The preceding remarks will now be illustrated by consideration of a simple
second-order system. Suppose that the linearized equation of the system is

L{y) =0, (1.3)

where L is a second-order linear differential operator and y is a dependent
variable characterising the state of the system. If we put y equal to

Yocos (M. T — vi)

in the left-hand side of equation (1.3), we obtain F(m, )y, cos (m.r — vt), where
F(m, ) is the function that appears in the frequency equation (1.1); clearly if
m and v satisfy the frequency equation then y,cos(m.r—vf) is a solution of
equation (1.3). When two such primary waves are present the secondary waves
are determined by an equation of the form
L(y) = Pcos (my.T—v,1), (1.4)

where the right-hand side is derived from the quadratic non-linear terms, giving
rise to a combination wave,and P is proportional to the product of the amplitudes
of the primary waves, the constant of proportionality being dependent on the
form of the non-linear terms. P isregarded as constant, though it will in fact vary
slowly with time as the amplitudes of the primary waves change.

If there are no secondary waves present initially then the appropriate initial
conditions for a second-order system are

y=0 and dy/dt=0 when {=0. (1.5)

The general solution of equation (1.4) can be expressed as the sum of a particular
integral and a complementary function, the latter in this case being an arbitrary
set of ‘free’ waves, that is waves subject to the condition expressed by (1.1).
A particular integral is clearly

Y= };(?n{;?g) cos (Mg, r — v i), (1.6)
provided F(1my,, v;) is not zero. In order to satisfy the initial conditions (1.5) we
must select from the arbitrary set of free waves two waves, each of wave-number
myg, and of appropriate amplitude. The frequencies of these two free waves are
the roots v,, v, of the equation F(mj;, v) = 0 (there are two roots because we are
considering a second-order system). We then find that

Vg =V,
= T —val -2 T —
Y F(my, vy) cos (mg.r v3)+(vb_Va) cos (mg. T —v, 1)
Vg—V,
+ =) cos(mg.r—p, ). (L.7)
Vo= Vy
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The amplitudes of these waves are of the second order of smallness (provided
F(m,, v,) is not close to zero) if the amplitudes of the primary waves are small.

When primary resonant interaction occurs we have F(my,v,;) = 0, and the
solution can be derived from equation (1.7) by letting v, approach one of the
roots of F(mg,,v) = 0, v, say. We then obtain

€08 (M. ¥ — ¥y t) — cos (M. 1 — vyt)
Va—7Vp

y=§—, tsin (mg. T —»5t) + }, (1.8)
where F' is the value of 0F [dv when m = mgzand v = v;. It canreadily be verified
that this is a solution of equation (1.4) subject to the initial conditions (1.5) and
the condition F(my, »5) = 0. We see from equation (1.8) that the amplitude of the
(myg,v;) wave grows linearly in time. This is the important case of primary
resonant interaction. No matter how small P is, given sufficient time, this wave
can grow in amplitude until it becomes significantly large. If we denote the
amplitude of the wave (mg, ;) by 7, and assume that P is a slowly varying
function of time (i.e. dP[dt < v, P, an assumption that is justified @ posteriori for
the case considered in § 3) then we find that

dy,/dt = P|F’ (1.9)

an equation to which we refer subsequently.

A special case of particular interest occurs when v = 0 is a solution of the
frequency equation; ‘waves’ of the form sin (m.r 4 ¢) are then possible solutions
of the linearized equations for all values of m and e. The phase velocity and
group velocity are both zero and the system is quasi-static, its state being
changed only by non-linear effects. Furthermore, all these waves interact
resonantly to transfer energy to other waves of the same type, provided non-
linear effects are present, and as a result resonant interactions are not confined
to particular triplets and energy exchanges within this set of ‘waves’ are
extremely complicated. An example of this type of behaviour is provided by the
turbulent motions of a homogeneous fluid.

A further interesting special case occurs when the phase speed is independent
of the wave-number, i.e. when the system is non-dispersive. All waves proceeding
in the same direction can then interact resonantly. Such a group of waves can
therefore change its form comparatively easily by non-linear interactions but
will not easily lose energy to waves moving in any other direction.

2. Conditions for primary resonant interaction in a two-layer liquid
system

We now show that primary resonant interaction can occur in a two-layer
liquid system with a free upper surface. The frequency equation for such a
system (with no stream velocity) is

v¥(p + p' tanh mh tanh mh’) — v2p(tanh mh + tanh mh') gm

+(p—p")g*m? tanh mh tanhmb’ = 0, (2.1)

where the primed quantities refer to the upper layer and the unprimed quantities
to the lower, & and &' are the equilibrium depths of the layers (see Lamb’s



Energy transfer between external and internal gravity waves 469

Hydrodynamics, § 231). Let us, for the moment, confine our attention to waves
moving in the z direction (positive or negative). We take v as positive and the
sign of m then determines the direction of propagation of the wave. The solution
curves of equation (2.1) in the (m, v)-plane are sketched in figure 1. The curves
OE, and OFE, represent external waves and the curves O, and OI, represent
internal waves,

Ficure 1. Schematic representation of the conditions for resonant interaction in the
one-dimensional case. The external wave represented by 4 belongs to the two
resonantly interacting wave triplets represented by 4, By, C, and 4, B,, C,.

Consider a particular external wave travelling in the positive z direction
represented by the point 4 on the curve OF, as indicated in figure 1. If we draw
a curve commencing at A4, congruent to, and with the same orientation as Ol,,
this will intersect OF, at just one point, B, say. If we denote by C, the point OI,
such that OC; = AB, then the waves represented by the points 4, B, and C
evidently form a resonantly interacting triplet since OB, = OA + OC, and 4,
B, and () are clearly all solution points of equation (2.1). Similarly, if we draw
a curve commencing at 4 congruent to O, but rotated through 180°, this will
intersect OF, at one point only, B, say, with a corresponding point C, on OI,.
The points 4, B, and C, form a resonantly interacting triplet in which the roles
of A and B are now reversed. There are no other interactions involving A (except
for the shallow water case where any two waves of similar ty pe moving in the same
direction interact resonantly to produce a secondary of the same type moving in
the same direction). These resonantly interacting triplets always involve two
external waves moving in the opposite direction to one another and one internal
wave.

The solution surfaces of equation (2.1), for waves moving horizontally in any
direction, are surfaces of revolution (resembling cones near the origin), obtained
by rotating the curves OI and OF about the v-axis. Let us, as in the one-
dimensional case, consider an arbitrary point 4 on the external wave surface.
If we imagine the internal wave cone to be completed by the addition of its image
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in the m-plane and then moved without change of orientation, so that its apex
previously at O is now at 4 ; then the curve of intersection between the ‘K cone’
and the completed ‘I cone’ gives the waves that interact resonantly with the
wave represented by A (see figure 2). For any given direction of propagation,
different from that of 4, there are just two external waves that interact with 4,
one with wave-number greater than 4 and one with wave-number less than 4.
This is also illustrated in a two-dimensional diagram (figure 3).

1#"

x

Ficure 2. Schematic representation of the conditions for resonant interaction in the
two-dimensional case. The external wave represented by A4 interacts with the external
wave B where B can lie anywhere on either branch of the curve of intersection of the
two cones.

When mh and mh’ are sufficiently small, shallow-water theory is applicable and
the results can be expressed analytically in a relatively simple way. Equation
(2.1) reduces to

pvt—pv2gm*(h+ k') + (p— p’) g*m*hh’ = 0. (2.2)
If the total depth of liquid is H and we put
h=1HQ1+a), K =1H(-w), (2.3)
rP=p'lp <}, (2.4)
VZ 2 V2
then (gHmz) — (gHmz) +3(1=-r3)(1—a?) =0, (2.58)
2
and ;:——2 =gH (l%z) = (C? (external waves), (2.6)
V2 l—a .
— =gH (—-ﬁ) = (% (internal waves), 2.7)
My 2

where a® = r24-o?—riy? (2.8)
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and C, and C; are the phase speeds of external and internal waves respectively.
The quantity a? is a maximum, for any given value of r, when a is zero, i.e. when
the layers are of equal depth.

Suppose there are two primary external waves (v, m;) and (v,, my) which
both satisfy equation (2.5), so

v, =C,m; and v,=C,m,. (2.9)
We have assumed that the frequencies are necessarily positive, the direction of
propagation being given by the direction of the vector wave-number m. For

resonance to occur one or other of the combination waves must satisfy the
frequency equation for internal waves; either

vi+vy = C;\m; +my|, (2.10)
or v — vy = C;lm;—my|. (2.11)
From equation (2.9) we obtain
C2(my +my)? = C%|m, + m,|2, (2.12)
or C3(my—m,)? = CF [m; — my2. (2.13)
The former equation is never satisfied because C, > C; and m; +m, > |m, + m,)|.
The latter condition, which arises from the combination wave of wave-number
m; = m, — m,, leads to the equation

—h2
1 bcos0) 1—0,

T (2.14)

5228 (
where 8 is the ratio of the magnitudes of the vector wave-numbers (S = m,/m,),
6 is the angle between them and

B = C3(C2 = (1-a)/(1 +a). (2.15)

The locus of the vector wave-numbers m, that resonate with a given wave-
number m, is sketched in figure 3.

When m, and m, have the same direction (i.e. & = 0) there is only the trivial
solution, m; = m,, m,; = 0. For all other values of @ there are two possible
values of m,; in particular when the waves move in opposite directions (i.e. when
@ = ) we have:

baliy = mofmy = (1=B)[(1+B) or (1+b)/(1—b), (2.16)
my/m, = 2/(14+b) or 2/(1-5), (2.17)
and vafv; = 2bJ(14+b) or 2b/(1—0). (2.18)

To give a numerical example let us suppose that the layers are of equal depth and
that p’/p = 0-9. We then find that b = 0-16 and
Vafvy = my[my = 0-72,
myfmy = 175,
vyfvy = 0-27.

As a second special case we assume that the upper layer is shallow and that the
lower layer is deep, i.e. that mh is large and mA’ is small, an assumption that is
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often appropriate for a range of wave numbers in the ocean. The frequency
equation (2.1) now reduces to a simple form which has the two roots
V: = gm, (2.19)
V2= gh'm*p—p')jp = ctm? say (2.20)
(see Lamb’s Hydrodynamics, § 231), the former representing external waves,

which behave as deep water waves, and the latter representing internal waves,
which behave as shallow water waves. If we define v, by

vi = gp/k (p—p') = (g/c.)?, (221)

Figure 3. The locus of external vector wave-numbers that interact resonantly
with the external wave m,.

and if v is the frequency of an external wave, we have from (2.19) and (2.21)

(v[ve)? = mh'(p—p')fp < 1, (2.22)
since mA’ is small by hypothesis and (p—p'}/p < 1. Similarly,
(v[m)? = cip[mh’(p—p’) > c}. (2.23)

If there are two external waves (v,, m,) and (v,, m,) then both satisfy equation
(2.19) s0 v? = gm, and V] = gm,. Resonance, which transfers energy to an internal
wave, will occur if one or other of the combination waves satisfies the frequency
equation (2.20) for internal waves, that is, if either equation (2.10) or (2.11) is
satisfied. The former condition cannot be satisfied because v, + v, > c;(m; +my)
(from (2.23)) and m, +m, > |m; + m,|. The latter condition leads to

Vi(vy — ) = vi+ v — 2§12 cos 0, (2.24)

where, as before, 0 is the angle between the vector wave numbers m, and m,.
Let us put o = (v, + )20, (2.25)
€ = (v, — ¥5)/2v,, (2.26)



Energy transfer between external and internal gravity waves 473

then by virtue of (2.22) o and € are both small and from (2.24) we obtain
€2 = 4e%02 4+ (02 —€2)%sin2 16, (2.27)

whence €2 < (0% 4 €?)? (2.28)
and € must be of the order of o2.
Retaining only terms of the order of €2 in equation (2.27) we obtain the simple
result
€ = 0%sin 16,
or vy = v —Vy = (2v0)"1(vy + v,)?sin 10, (2.29)

If @ = 0 there is only the trivial solution v4 = 0. In all other cases we can select
two external waves of approximately the same frequency which will interact to
transfer energy to internal motions. The difference in frequency is given by
equation (2.29). As a numerical example let us suppose that the waves are
moving in opposite directions (6 = 7), that 2" = 103cm and (p—p')/p = 1072
We then find that v, is about 10sec~!. If we now consider external waves of
frequency about 1sec—' which have wavelengths of about 60 m, then the differ-
ence in frequencies, from (2.29), is approximately 0-1 sec.

3. Detailed analysis of the shallow water case
Derivation of the equations

When the vertical acceleration is negligible by comparison with g, the relevant
equations can be written

oV'[ot+ V. VV' 1+ gV(h'y’ + hy) = 0, (3
o let+V.(yV)+ V.V =0, (3.2
oV/[ot+ V. VV +gV(r?h'y’ + hy) = 0, (3.3
onot+V.(qV)+V. V=0, (3.4

where, as before, the primed quantities refer to the upper layer and the unprimed
quantities to the lower, b is the equilibrium depth, £(1 4 %) is the actual depth (so
that 7 is a dimensionless measure of the deviation from equilibrium) and V is the
horizontal velocity. The method used in the following analysis is applicable
whatever the value of #'/h; however, to avoid heavy algebra, attention is here
confined to the case where the layers are of equal depth so « is zero in equations
(2.3) and (2.8) and

M=h=1H, r=a. (3.5)

The variables are first separated into ‘external’ and ‘internal’ variables

defined by
V.=(1+7r)V' +V)/4r, V,= (1-7)(rV —-V)/4r, (3.6)

Ne = (L+r) [ry" +y)[4r, ;= (L—r) (ry’ —n)/4r, (3.7)

and, as we shall see, a pure internal mode of motion is characterized by the
vanishing of the external variables and vice versa. Using these variables as the
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dependent variables in equations (3.1)-(3.4) we find after appropriate trans-
formation:

oV, jot+ 11 +r)gHVy,+V, VYV, +V, . VV, +V, VYV _+b-4V,.VV, =0, (3.8)

aﬂe/at'i' V. Ve + V. (Weve) + V. (ﬂevi +; Ve+ b—4ﬂzvz) = 0> (3~9)
oV ot + (1 —~7r)gHVy;+V,..VV;+V, . VV +V, . VV, 3+ bV, VV, =0, (3.10)
on[ot+ V.V, +V.(q; V) +V. (9 V,+ 9,V + 0%, V,) = 0, (3.11)

where b2 is defined by equation (2.15) (with ¢ = ). These equations are to be
compared with those for a single layer:

oV/ot+ HgVy+V.VV =0, (3.12)
and on/ot+ V. V+V. (gV) = 0. (3.13)

Equations (3.8)-(3.11) appear, at first sight, to be more complicated than those
from which they were derived. It is possible, however, merely from the form of
these equations, to say a great deal about the characteristics of internal and
external modes of motion of a two-layer system. If the non-linear terms are
negligible in equations (3.8)—(3.13) then only the first two terms remain in each
equation. Equations (3.8)-(3.11) now form two independent pairs of equations,
one pair for external motions and one pair for internal motions. Not only are
these pairs isomorphic with one another but each pair is also isomorphic with
the linearized equations for a single layer. The apparent gravity in the case of
external motions is (1+7)g/2 which is approximately equal to (though always
less than) g when the difference between the densities of the layers is small. The
speed of external waves is then very close to the speed of waves in a single layer
of depth H. On the other hand, the apparent gravity in the case of internal
motions is (1 —7)g/2 and this is much smaller than g when the density difference
is small (i.e. when r is close to unity). Internal waves then travel much more
slowly than external waves. Furthermore, in a pure external motion V, is zero
o the two layers move in phase with one another and the slip between the layers
is small (though non-zero). In internal motion V, is zero, the layers move in
opposite phase and the slip between them is large; internal motions are therefore
more rapidly dissipated by internal friction than are external motions of
comparable energy.

Returning to equations (3.8)—(3.13) we notice that the isomorphism extends in
part to the non-linear terms. The non-linear terms in equations (3.12) and (3.13) are
associated with energy transfer between different scales and types of shallow
water motion of a single layer. These terms occur in exactly the same form in
each of the pairs of equations (3.8), (3.9) and (3.10), (3.11) (the transformation
(3.6), (3.7) was in fact selected so that this would be so). The process of energy
transfer between various scales and types of external motion (or between various
scales and types of internal motion) is exactly the same as the process of transfer
for a single layer. The other non-linear terms in equations (3.8)—(3.11) represent
interactions and energy transfers between internal and external motions and
have no counterparts in the equations (3.12), (3.13) for a single layer. 1t is this
type of interaction with which we are concerned in the following analysis.
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The equations (3.8)—(3.11) are applicable to all possible shallow water motions
of the two-layer system, including motions involving rotation about a vertical
axis as well as gravity waves. We exclude rotational motions from considera-
tion by assuming that both curl V, and curl V, are zero. Furthermore, following
Lorenz (1960), we make the ‘maximum simplification’ by considering only
the non-linear terms that are relevant to the resonant interactions of a
particular triplet comprising two external waves and one internal wave. The
external waves are then modified by non-linear terms involving the products of
internal and external variables and the internal waves are modified by terms
involving products or squares of external variables. On these assumptions
equations (3.8)—(3.11) simplify to:

oV, /ot +5(1+r)gHVy,+V(V,.V,) =0, ( )
N ft+V.V +V. (9, V,+9,V,)=0, ( )
oV, ot + 11 —rygHV7,;+b*V(3V?) = 0, (3.16)
o;[ot+ V.V, +b4V. (4, V,) = 0. (3.17)

We suppose that we have a solution of the form:

M, = Y1810 (v, £ — M, .T) +7,8in (vt —Mm,.T), (3.18)
V,=0? {ll—vr:n—l sin (v;t—m,.r) +n2V12112 sin (vyt — mz.r)}, (3.19)
N = Ygsin (vgt —m,. 1), (3.20)

V, =2 @Vﬂ?' sin (v,t —m,. 1), (3.21)

3

where m,; = m, — m, and the resonance condition (2.13) is satisfied. We then use
equation (1.9) to determine the rates of change of the three amplitudes #,, 7,
and 7.

Let us first consider the change in amplitude of the internal wave, 7,, caused
by resonant interaction of the two external waves. We find, from equations (3.16)
and (3.17),

—82—77"—02‘72 ;= bV Vle——a—( v )] 3.22

atz iV = . 2 Ve atnee . ( )
The terms on the right-hand side of equation (3.22) that are relevant in the
resonant interaction are those involving cos (vt —mg,.r) which arise from the
cross-product terms sin (v, £ - m,.r)sin (v,f — m,.r). Whence

0%y,
o2

A TR L T L e

)} cos (vgf —my.T),
My My Moy Mg My
(3.23)

where, as in the introduction, we have put v; = v; —v, and m; = m, —m, and

we have used equations (2.9) and (2.11). Putting m,.m,/m,m, equal to cosf
and using the relation

m,.m; mg.m,

Mamg | Mg,

b(1+ cos0), (3.24)
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(which is derived by putting m; = m; —m, and using equation (2.13)) and
equation (1.9) we find

dy,/dt = Lb2vgm,n,[cos 8+ b2(1 + cos )]. (3.25)
Similarly, the rates of change of 7, and 7, are given by

dy, /dt = — Ly 5, 75[cos 6 + b%(1 + cos 6)], (3.26)
and diye/dt = + vy 59, [cos @+ b%(1 + cos 6)]. (3.27)

Properties of the solutions

When other interactions are neglected, equations (3.25)—(3.27) completely
describe the variation in the amplitudes of the three waves comprising a
resonantly interacting triplet. If the factor cos &+ b5%(1 + cos 0) is zero then there
is no primary interaction. Thus if 52 is small (i.e. if the densities of the layers are
nearly equal) then external wave trains, whose directions of propagation are at
right angles to one another, will not interact even though the interaction condi-
tions (2.13) are satisfied. On the other hand, if 4% is close to unity (i.e. if the
density of the upper layer is very much smaller than that of the lower) then
external wave trains, whose directions of propagation are inclined at 120°, will
not interact.

The first integrals of this set of equations are, of course, intimately related to
the dynamical properties of the interacting triplet. Though there are only two
such independent integrals these can appear in various guises; for instance the
mean momentum of a liquid column of the two-layer system is given by

M = 3H(p'n' V' +pyV). (3.28)

The bars represent time means over an interval that is long compared with the
periods of the waves but sufficiently short for the changes in the amplitudes to
be negligible. In terms of the internal and external variables (see equations (3.6)
and (3.7)) we have

4Hp &~ —
M=43 _5)2 0% Vetm: Vi), (3.29)
whence from equations (3.18)—(3.21)
_4pHCE [ o my o,y o, My
M= 1—72 {b (77171"‘77272)"‘77373}- (3.30)

It is immediately apparent from equations (3.25)—(3.27) and the definition of
m, that
dM

= =0, (3.31)

thus the momentum of the interacting triplet is constant. Similarly, the mean
wave energy of a liquid column is

E = IH{p'[V"+ YgH(y'"* + 297")]+ p[ V2 + 3gH7?]}, (3.32)
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which transforms to

2
E = pg {b2m+ﬂ}

4p'HCe

{62(n3 + 73) + 73} (3.33)

It is also apparent from equations (3.25)~(3.27) and the definition of v; that
dE|dt = 0 (3.34)

so that the wave energy of the interacting triplet is constant.
Equations (3.25)-(3.27) are of the form mentioned in the introduction where
the rate of change of each amplitude is proportional to the product of the other

72

73

t

Ficure 4. Variations in amplitudes of the waves comprising
a resonantly interacting triplet.

two; the solutions are therefore Jacobian elliptic functions of time. We will
briefly consider the case where the initial amplitude of the internal wave is zero
and the initial amplitudes of the external waves are 7,, and 7,,. The appropriate
solution is given by

Ny = ~7yesn(yi— K), (3.35)

Nz = Tgosec S dn (yi— K), (3.36)

N5 = N1ob(vs/vy)t on (yt — K), (3.37)
where = 1b[cos 8 +b(1 + cos 8)]9,5(va v5)? cosec B,

= 1b[cos 0 + b(1 + cos )] 7,9(v, v5)E sec S, (3.38)
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and the modulus of the elliptic functions is £ where

k =sinpg,
tan2f — (u)2 V2
N20/ V1

and X is the complete elliptic integral

_(r _d¢
K—fo (1—k?sin? )}’

(3.39)

(3.40)

(3.41)

The period of oscillation of 7, and 9, is given by 4K/y and the period of 4, by
2K [y. The ratios of these periods to those of the waves themselves is about 103
and so we can justify a posteriori the assumption made in the derivation of

equation (1.9).

The variations in amplitude are sketched in figure 4. The low-frequency
external wave of amplitude 7, never loses all its energy whereas the other external
wave does lose all its energy after an interval K/|y|, when the amplitude changes
sign (i.e. there is a phase change of 7). At this time the internal wave has its
maximum amplitude and energy. In reality because of the rapid damping of the
internal wave, it is unlikely that a complete oscillation of the type indicated in

figure 4 could take place.
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